Exam. Code : 103204 Subject Code : 1140

B.A./B.Sc. $4^{\text {th }}$ Semester MATHEMATICS

Paper-II
(Solid Geometry)
Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt any FIVE questions, selecting at least TWO questions from each section.

SECTION-A

I. (a) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the co-ordinate axes in A, B, C. Prove that the equation to the cone generated by the line drawn from O to meet the circle $A B C$ is

$$
y z\left(\frac{b}{c}+\frac{c}{b}\right)+z x\left(\frac{c}{a}+\frac{a}{c}\right)+x y\left(\frac{a}{b}+\frac{b}{a}\right)=0
$$

(b) Find the equation of the right circular cone generated when the straight line $2 y+3 z=6$, $\mathrm{x}=0$ revolves about z -axis.
II. (a) Find the equation of the cone circumscribing the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{x}-2 \mathrm{y}-2=0$ and having its vertex at $(1,1,1)$.
(b) Prove that the equation $\sqrt{\mathrm{fx}}+\sqrt{\mathrm{gy}}+\sqrt{\mathrm{hz}}=0$ represents a cone which touches the co-ordinate planes and that the equation of reciprocal cone is $\mathrm{fyz}+\mathrm{gzx}+\mathrm{hxy}=0$.
III. (a) Find the value of λ if the plane $\lambda x+y+z=0$ cuts the cone $\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=0$ in perpendicular lines.
(b) Find the equation of the cone passing through the coordinate axes and the three mutually perpendicular lines :
$\frac{1}{2} x=y=-z, x=\frac{1}{3} y=\frac{1}{5} z$ and $\frac{1}{8} x=-\frac{1}{11} y=\frac{1}{5} z$.
5
IV. (a) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{\ell}=\frac{y}{m}=\frac{z}{n}$ and base the conic $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, $\mathrm{z}=0$.
(b) Find the equation of the right circular cylinder of radius 2 whose axis is the line $\frac{x-1}{2}=y-2=\frac{z-3}{2}$.
V. (a) A cylinder cuts the plane $\mathrm{z}=0$ in the curve $x^{2}+\frac{y^{2}}{4}=\frac{1}{4}$, and has its axis parallel to $3 x=-6 z$. Find its equation.
(b) Show that the angle between the lines

$$
\begin{aligned}
& x+y+z=0, a y z+b z x+c x y=0 \text { is } \frac{\pi}{2} \text { if } \\
& a+b+c=0
\end{aligned}
$$

SECTION-B

VI. Identify the surface represented by $4 x^{2}+9 y^{2}+16 z^{2}=144$. Trace it roughly. Also find the area of plane curve in which $\mathrm{y}=2$ cuts it.
VII. Prove that :
$5 x^{2}-16 y^{2}+5 z^{2}+8 y z-14 z x+8 x y+4 x+20 y+4 z-24=0$
represents hyperbolic paraboloid. 10
VIII. (a) Show that the locus of the foot of perpendicular
from the centre of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
to any of its tangent planes is
$\left(x^{2}+y^{2}+z^{2}\right)^{2}=a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}$. 5
(b) Prove that the feet of the six normals from (α, β, γ) to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ lie on the cone

$$
\frac{a^{2}\left(b^{2}-c^{2}\right)}{x} \alpha+\frac{b^{2}\left(c^{2}-a^{2}\right)}{y} \beta+\frac{c^{2}\left(a^{2}-b^{2}\right)}{z} \gamma=1 .
$$

IX. (a) Find the locus of points from which three mutually perpendicular tangent lines can be drawn to the conicoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(b) Show that the plane $a x+b y+c z+d=0$ touches the surface $p x^{2}+q y^{2}+2 z=0$ if $\frac{a^{2}}{p}+\frac{b^{2}}{q}+2 c d=0$. 5
X. Show that the feet of the normals from the point (α, β, γ) to paraboloid $x^{2}+y^{2}=2 a z$ lie on the sphere $x^{2}+y^{2}+z^{2}-z(\alpha+\gamma)-\frac{y}{2 \beta}\left(\alpha^{2}+\beta^{2}\right)=0$. 10

